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The phase behavior of bidisperse ferrocolloids consisting of binary mixtures of dipolar hard spheres(DHS’s)
with different particle diameters and different dipole moments is investigated using density-functional theory in
a modified mean-field approximation. We focus on the fluid phase regime, where we consider both isotropic
and anisotropic states. Depending on the parameterG—measuring the asymmetry of the dipolar couplings—the
systems display complex fluid-fluid phase behavior involving demixing transitions, as well as first- and second-
order isotropic-to-ferromagnetic phase transitions. The topology of the resulting phase diagrams turns out to be
similar to those corresponding to monodisperse DHS mixtures investigated previously by us[Phys. Rev. E69,
041201(2004)]. However, additional size asymmetry has a strong impact on the relative importance of the
various types of phase transitions. In particular, the demixing transition of bidisperse ferrocolloids is strongly
destabilized compared to that of monodisperse DHS’s in the sense that demixing critical points are significantly
shifted towards lower temperatures.
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I. INTRODUCTION

Ferrocolloids are stable colloidal suspensions of small
magnetic particles in a carrier liquid like water or oil[1]. The
permanent magnetic dipole moment of the single-domain
particles is proportional to the volume of their magnetic
cores. In ferrocolloids, polydispersity in the particle sizes
(which is an essentially omnipresent feature of colloidal sys-
tems) therefore yields automatically a nonuniformity in the
distribution of magnetic moments and the resulting dipole-
dipole interaction strength. The effect of this nonuniformity
on material properties such as magnetization, microstructure
(in particular, cluster formation), and viscosity has been in-
tensely studied both experimentally[1] and, more recently,
also by computer simulation[2–6] and theory[7]. However,
most of these studies are restricted to the investigation of one
or a few thermodynamic states corresponding to highly di-
lute ferrocolloid systems.

Less is known about the influence of polydispersity on the
overall phase behavior. In a recent computer simulation
study[8], Kristof et al. have calculated vapor-liquid coexist-
ence curves of various polydisperse ferrocolloids atone
(fixed) total density. The results imply saturation of larger
(i.e., more strongly interacting) particles in the denser phase,
indicating that vapor-liquid transitions in polydisperse ferro-
colloids are to some extent coupled withdemixing phase
transitions. This is in qualitative agreement with experiments
[9,10] and also with earlier theoretical studies[11,12],
where—as a first approximation for polydispersity—
bidispersesystems consisting of two fractions of magnetic
particles with significant size differences have been consid-
ered. However, a broader understanding of the link between
the nature and degree of nonuniformity and the macroscopic
phase behavior, in particular the appearance of demixing
phase transitions, is still missing.

As a contribution to fill this gap we have recently pre-
sented[13] a systematic study of the fluid-fluid phase behav-
ior of the most simple model for a polydisperse ferrocolloid,
which is a binary mixture of dipolar hard spheres(DHS’s)
with different dipole momentsmA andmB but equalsizes. In
order to elucidate the effect of additional size nonuniformity
we consider in the present study an extended binary DHS
model involving different diameterssA andsB, to which the
dipole momentsmA~sA

3 andmB~sB
3 are coupled as in real

systems. Following our ealier work[13], we perform our
investigations on the basis of density-functional theory in the
so-called modified mean-field(MMF) approximation
[14–16]. Despite various shortcomings[17], the great advan-
tage of MMF theory compared to computer simulations or
integral equation theories is that it allows one to scan phase
diagrams for large portions of the parameter space with rea-
sonable computational effort.

The remainder of this paper is organized as follows. In
Sec. II we describe our model and summarize key expres-
sions of MMF density-functional theory for dipolar binary
mixtures [13]. Numerical results are presented in Sec. III,
where we first consider mixture phase diagrams in the
concentration-packing fraction plane at various temperatures.
This is completed in Sec. III B 3 by a presentation of the
corresponding phase diagrams in a plane spanned by the
chemical potentials, which are input quantities in our theory.
Finally, in order to sort out the effect of size asymmetryon
top of dipolar interaction asymmetry we compare in Sec.
III C the behavior of a specific bidisperse DHS mixture to
that of the corresponding mixture monodisperse in sizesmB

,mA,sB=sAd. Our conclusions are summarized in
Sec. IV.

II. THEORY

A. Model

We consider a bidisperse ferrocolloid modeled by two
species(A and B) of dipolar hard spheres with permament
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dipole momentsmA and mB and diameterssA and sBÞsA.
The hard cores are assumed to be additive—that is,

sab = ssa + sbd/2, s2.1d

where the subscriptsa andb denote the components consid-
eredfasbd=A,Bg. The magnetic dipole moments of the par-
ticles are coupled to the diameters via the relation

ma = mVa, s2.2d

wherem is the specific magnetization andVa=psa
3/6 is the

volume of the particle. The resulting pair potential between
two particles with coordinatess1d=sr 1,v1d and s2d
=sr 2,v2d is given as

uabs12d = H `, r12 , sab,

uab
dipsr 12,v1,v2d, r12 . sab,

J s2.3d

where r12= ur 12u= ur 2−r 1u is the particle separation andv
=su ,fd represents the orientation of a dipole in a spatially
fixed coordinate system. The dipolar potential is given by

uab
dipsr 12,v1,v2d =

mamb

r12
3 fm̂sv1d · m̂sv2d − 3sm̂sv1d · r̂ 12d

3sm̂sv2d · r̂ 12dg, s2.4d

wherem̂svd andr̂ 12 are unit vectors in the direction ofv and
r 12, respectively. Since we are interested in spatially homo-
geneous, but possibly orientationally ordered(ferromagnetic)
phases, we consider fluid states with singlet densities

rasr 1,v1d =
ra

2p
āascosud =

ra

2p
S1

2
+ o

l=1

`

aa,lPlscosudD ,

s2.5d

where āascosud is a normalized orientational distribution
function fe−1

1 dxāasxd=1g and u is the angle relative to the
director of the orientational order(if present). Consequently,
we can expand the distribution in Legendre polynomialsPl
[see second member of Eq.(2.5)], where the coefficientsaa,l
are connected to the usuallth-rank order paramtersPa,l via

Pa,l =E
−1

1

dxāasxdPlsxd =
2

2l + 1
aa,l . s2.6d

The isotropic phase is specified byPa,lù1=0—i.e., āasxd
=1/2—whereas a ferromagnetic phase is characterized by
Pa,l Þ0 for all l.

B. Modified mean-field density-functional theory

In order to calculate the phase behavior of the model fer-
rocolloids under consideration we employ density-functional
theory in the modified mean-field approximation. We restrict
our presentation here to the key expressions, since detailed
descriptions of the MMF approach can be found in Refs.
[14,15] and in Ref.[13], where we applied the same theory
to DHS mixtures withequaldiameters.

The central quantity is the grand canonical density func-
tional V of the mixture

V

V = sFid + FHS + Fdipd/V − o
a

mara, s2.7d

with the ideal gas partsFidd, the hard-sphere(HS) excess part
sFHSd, and a part which stems from the dipolar interaction
sFdipd. The ideal part is given by

Fid

V = o
a

ra

b
flnsraLa

3d − 1g + o
a

ra

b
E

−1

1

dxāasxdlnf2āasxdg,

s2.8d

whereV is the Volume,La is the thermal wavelength, and
b=1/kBT is the inverse temperature. The second term in Eq.
(2.8) accounts for the loss of entropy in anisotropic configu-
rations[it vanishes forāasxd=1/2].

For the hard-sphere excess part we choose the Boublik-
Mansoori-Carnahan- Starling-Leland(BMCSL) approxima-
tion [18–20]

FHS

V =
r

b
FS j2

3

j0j3
2 − 1Dlns1 − j3d +

3j1j2

j0s1 − j3d

+
j2

3

j3j0s1 − j3d2G , s2.9d

with the total number densityr=rA+rB and the moments

ji =
p

6o
a

rasa
i . s2.10d

For the special casesA=sB, the BMCSL approximation re-
duces to the Carnahan-Starling expression for one-
component HS fluids[21], which we used in our previous
study of monodisperse DHS mixtures[13].

The MMF approximation enters into the dipolar contribu-
tion Fdip, where the pair correlation involved in the exact
expression forFdip is set to its low density limit—i.e.,
gabs12d→expf−buabs12dg. As a result, the excess free energy
reduces to a quadratic form in the densities and order param-
eters[13],

Fdip

V = o
ab

rarbo
l=0

`

uab,laa,lab,l , s2.11d

whereaa,0=1/2 and thecoupling parameters are given as a
power series in terms of the dipole moments—that is,

uab,l = o
n=0

`

uab,l
snd smambdn. s2.12d

For n.1, the temperature-dependent coefficientsuab,l
snd ap-

pearing in Eq.(2.12) are defined by

uab,l
snd = −

1

2b

1

4p2n!
s− bdnE

sab

`

dr12
1

r12
3n−2

3E dv1dv2dv12Plscosu1dPlscosu2d

3F̃112
n sv1,v2,v12d, s2.13d
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whereF̃112 describes the angle dependence ofuab
dip—that is,

F̃112sr 12,v1,v2d = hm̂sv1d · m̂sv2d − 3fm̂sv1d · r̂ 12g

3fm̂sv2d · r̂ 12gj. s2.14d

The angular integrals in Eq.(2.13) can be solved as de-
scribed in Ref.[13]. The coefficient corresponding ton=1 in
Eq. (2.12) is related to an integral over the long-range dipo-
lar potential itself and therefore requires special treatment
(see Ref.[13] and references therein). One eventually obtains

uab,l
s1d = −

8p

27
dl,1. s2.15d

In practice, we truncate the Taylor expansion appearing in
Eq. (2.12) at nmax=4. Explicit expressions for the resulting
set sl ,nø4d of coefficientsuab,l

snd [after performing the angu-
lar integrals in Eq.(2.13)] are given in Table I. In order to
identify the set of ten parametersshra,aa,1, . . . ,aa,4jd char-
acterizing the equilibrium state at a givensma,T,Vd, we
solve the Euler-Lagrange equations

]sV/Vd
]ra

= 0,
dsV/Vd

dāasxd
= 0. s2.16d

This is done numerically by employing a multidimensional
Newton-Raphson algorithm.

1. Searching for coexisting states

In order to find twocoexistingstates at a given tempera-
ture T one has to search for those chemical potentialsmA

coex

and mB
coex where the pressures of the two states(1 and 2)

considered are identical—that is

p1 = − Vfra,1
eq ,āa,1

eq sxdg/V = p2 = − Vfra,2
eq ,āa,2

eq sxdg/V.

s2.17d

In Eq. (2.17), ra,i
eq and āa,i

eqsxd, i =1,2, are twoequilibrium
states satisfying Eq.(2.16). In practice, we perform the
search formA

coex andmB
coex by using the ansatz

smA
coex,mB

coexd = lm + nm', s2.18d

wherel andn are coefficients, which have to be determined
using Eq. (2.17), and the vectorsm and m' specify two
orthogonal, fixed directions in the plane spanned bymA and
mB. A good choice to investigate isotropic-to-ferromagnetic
transitions is the directionsm=s−1,1d and m'=s1,1d, im-
plying that a change ofl corresponds to a variation of the
chemical potential differenceDm=mB−mA, while a change
of n corresponds to a variation of the total chemical potential
m=mA+mB. The search is started from some known initial
solution(e.g., a phase coexistence of a pureA fluid) specified
by the coefficientssl0,n0d. Increasingl successively from
l0, we determine the coexistence values ofn—and therefore
the pairssmA

coex,mB
coexd—by performing an(one-dimensional)

Newton-Raphson algorithm on the coefficientn. To deter-
mine demixing transitions, which usually occur at high pack-
ing fractions, it is more appropriate to successively increase
the total chemical potential, therefore settingm=s1,1d and
m'=s−1,1d. Hence, the temperature and chemical potential
differencesT,Dmd are the adequate tuning parameters to ex-
plore isotropic-to-ferromagnetic coexistences, while we use

TABLE I. The coefficientsuab,l
snd [see Eq.(2.13)] for l ,nø4.

n=1 n=2 n=3 n=4

l =0 0
−

8p

3

b

3sab
3 0

−
8p

25

b3

9sab
9

l =1
−

8p

27 0
−

16p

225

b2

6sab
6 0

l =2 0
−

8p

375

b

3sab
3 0

−
32p

6125

b3

9sab
9

l =3

0 0

16p

25725

b2

6sab
6 0

l =4 0 0 0
−

8p

99225

b3

9sab
9
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the temperature and total chemical potentialsT,md as tuning
parameters to search for demixing transitions.

III. RESULTS AND DISCUSSION

A. Reduced quantities and the one-component case

In the grand-canonical ensemble the state of the mixtures
can be characterized by the reduced temperatureT*

=kBTsA
3 /mA

2, the size ratios=sB/sA, the dipolar interaction
parameterG=smB

2sA
3d / smA

2sB
3d, the total chemical potential

m* ;mA
* +mB

* , and the chemical potential differenceDm*

;mB
* −mA

* , where ma
* =sA

3 /mA
2fma−b−1 lnsLa

3/sA
3dg. Minimi-

zation of the density functional then yields, along with the
orientational order parameters, the reduced densitiesra

*

=ras3. Instead of these latter quantities, we employ here the
packing fractionh=sp /6dSasa

3ra and the concentrationcA

=sA
3rA/ sSasa

3rad of speciesA as density order parameters.
In the limit Dm* →−` one recovers the MMF phase dia-

gram of a one-component DHS fluid containing only species
A (i.e.,cA=1). Results in theh-T* plane are shown in Fig. 1.
Disregarding any solid structures(which are not captured by
the present approach) there are two phases involved: an iso-
tropic gas(IG) with zero orientational order parameters(i.e.,
PA,lù1=0) appearing at low and intermediate packing frac-
tions and a ferromagnetic liquid(FL) with PA,lù1.0 appear-
ing at higher packing fractions(see the inset in Fig. 1). Be-
low the temperatureTTCPA

* related to thetricritical point
(TCP) of theA fluid the transition between the two phases is
of first order both inh and in the orientational order param-
etersPA,l.1. An exemplary(IG)-(FL) coexistence(T* =0.5) is
denoted by the open circles in Fig. 1. AboveTTCPA

* the (IG)-
(FL) transition becomes continuous(see the inset in Fig. 1).
The resultingcritical line separating the isotropic and ferro-
magnetic phase can be found from a Landau analyis as de-
scribed in Refs.[13,14].

B. Bidisperse ferrocolloids

We now turn to truemixturesof bidisperse ferrocolloids
characterized bysÞ1 and finite values of the chemical po-

tential differenceDm* . The phase behavior of these systems
strongly depends on the actual value of the dipolar interac-
tion parameterG. The latter is coupled to the size ratio
through Eq.(2.2), which impliesG=s3. In the following two
sections we discuss characteristic phase properties at four
typical values ofG in the range 0øGø1 (the behavior at
Gù1 then simply follows from interchangingA andB). To
illustrate our results we mainly employ a “quasi-three-
dimensional” representation where the phase transition lines
for various temperatures are plotted in theh-cA plane. More-
over, we present in Sec. III B 3 additional diagrams using a
plane spanned by the chemical potentials—i.e., the input pa-
rameters of our theory. This additional representation not
only helps to elucidate the effect of varyingG (or s, respec-
tively) on the mixture’s phase behavior, but also to later com-
pare (in Sec. III C) the bidisperse systems to monodisperse
DHS mixtures.

1. Weakly asymmetric systems

We start by considering weakly asymmetric mixtures. A
typical example is a system characterized byG=0.75, which
corresponds to a size ratios.0.91. Figure 2 shows the
associated phase diagram in theh-cA plane at several tem-
peraturesT* . In this representation, the pureA fluid discussed
in Fig. 1 corresponds to the limiting casecA=1 sDm* →
−`d—that is, the upper border of the phase diagram—while
the lower borderscA=0d corresponds to a pureB fluid
sDm* → +`d. In order to understand the mixture’s behavior
in between these cases we first consider the dashed line in
Fig. 2, which connects the tricritical points at intermediate
values of the chemical potential difference. As in the one-
component fluid[14], the behavior of the mixture order pa-
rametersh and cA upon approaching a TCP(at fixed m* ,
Dm* , or T*) is characterized by the mean-field exponentb

FIG. 1. MMF phase diagram of a monodisperse DHS fluid con-
taining only A particles in the packing fraction-temperature plane
fT* =kBTsA

3 /mA
2 ,h=sp /6drAsA

3g. The inset shows theh dependence
of PA,1 at T* =0.65. For an explanation of the lines and symbols, see
the main text.

FIG. 2. Packing fraction-concentration phase diagram for a bi-
disperse ferrocolloid withG=0.75 at various temperatures. For ex-
planation of the various lines, see the main text. The pairs of open
symbols denote coexisting states atT* =0.50/Dm* =−` (circles),
T* =0.50/Dm* =0.6 (triangles), T* =0.50/Dm* =0.9 (diamonds), and
T* =0.30/m* =−5.5 (squares). The solid circle denotes a demixing
critical point.
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=1. In Fig. 2, the crossing of the line of TCP’s with the upper
(lower) horizontal atcA=1 s0d indicates the packing fraction
corresponding to the TCP’s of the pure fluids—that is,
hTCPA

=hTCPB
. Also, states on the left-(right-) hand side of

the line of TCP’s are isotropic(ferromagnetic). The shape of
the dashed line then implies that, upon increasingDm* from
−` to +`, the concentrationcA of the TCP decreases mono-
tonically to zero, while the packing fraction remains essen-
tially constant. At the same time the temperaturesTTCP

* de-
crease monotonically fromTTCPA

* .0.59 to TTCPB

* =GTTCPA

*

.0.44 (where the latter relation follows from our definition
of T* andG). This indicates that the isotropic-ferromagnetic
transition in the mixture is generallydestabilizedcompared
to the one-component case(i.e., the pureA fluid). This de-
stabilization is not a simple scaling effect(resulting from the
different dipole moments) in the sense that the tricritical tem-
peratures do not depend linearly(only monotonically) on the
concentration of the weaker species.

Further information is gained from the two-phase coexist-
ence lines, which are indicated by the solid lines in Fig. 2.
Also, the symbols denote exemplary coexisting states, the
order parameters of which are given in Table. II. For orien-
tation consider first the pair of open circles at the upper bor-
der scA=1d of the diagram, which denotes an(IG)-(FL)
phase coexistence of the pureA fluid at temperatureT*

=0.5 (see the corresponding pair of open circles in Fig. 1).
Starting from these states and increasingDm* (with the tem-
perature kept fixed), the(IG)-(FL) phase coexistence remains
at first, but the two coexisting states develop a difference in
the concentrationcA. This is illustrated by the relative loca-
tion of the two triangles in Fig. 2 and the corresponding
values ofcA in Table II, from which it follows that the fer-
romagnetic phase is more saturated inA than the coexisting
isotropic phase. We understand this preference as a conse-
quence of the(relative to theB component) stronger cou-
pling betweenA particles, which—in combination with the
higher packing fraction—leads to a stronger mean field forA
particles. For the same reason theA particles are also stron-
ger oriented—i.e.,PA,l . PB,l. IncreasingDm* even further
the (IG)-(FL) coexistence finally terminates into a TCP,
where thePa,lù1 of the ferromagnetic phase vanish. Similar
phase behavior is found at other temperatures in the range
TTCPB

* øT* øTTCPA

* , and we conclude that the general mixture
phase behavior in this temperature range is essentially just an

“interpolation” between the(IG)-(FL) coexistence of the
pureA and that of the pureB fluid.

Only at substantially lower temperatures does one en-
counter new phase behavior characterized by the appearance
of additional critical points(CP’s) deep within the ferromag-
netic regime(see Fig. 2). Approaching these CP’s from low
temperatures(at fixed m* or Dm*) the differences between
the order parameters of the two coexisting phases vanish
with the (mean-field) exponentb=1/2. An exemplary coex-
isting state is indicated by the pair of squaressT* =0.3, m*

=−5.5d, and the corresponding order parameters are given in
Table II. It is seen that the two coexisting phases differ
mainly in cA, while the corresponding values ofh and Pa,l
are very close. One thus concludes that the additional critical
points are essentially due todemixingphase transitions, a
genuine mixture phenomenon which is clearly absent in pure
fluids. We note, however, that demixing appearently only
comes into play at very high values ofh—in fact, at packing
fractions outside the fluid phase regime. As a consequence,
the line of tricritical points, which are characterized by sig-
nificantly smaller packing fractions than those associated
with the demixing CP, remains essentially unaffected by
demixing.

2. Moderate and strongly asymmetric mixtures

Decreasing the size ratio, and therebyG, from the value
discussed in Sec. III B 1 one generates mixtures with more
asymmetric dipolar interactions. Figure 3 illustrates the
phase behavior atG=0.60ss.0.84d. At this degree of asym-
metry, the topology of the phase diagram is essentially still
the same as atG=0.75. However, closer inspection reveals
that the temperatures related to the demixing CP’s are sub-
stantially larger than atG=0.75, while the packing fractions
characterizing the demixed states are much smaller. These
changes reflect the increased tendency of the more asymmet-
ric system to demix. In fact, for temperaturesT* &0.50 the
demixing tendency “interferes” so strongly with the tricriti-

TABLE II. Order parameters of the coexisting states in Fig. 2.
Not shown are the values ofPa,l.2.

h cA PA,1 PB,1 PA,2 PB,2

Circles IG 0.115 1.0 0.0 0.0 0.0 0.0

FL 0.333 1.0 0.842 0.768 0.604 0.473

Triangles IG 0.192 0.372 0.0 0.0 0.0 0.0

FL 0.288 0.590 0.772 0.676 0.479 0.345

Diamonds IG 0.208 0.243 0.0 0.0 0.0 0.0

FL 0.237 0.307 0.570 0.454 0.232 0.142

Squares FLA 0.565 0.593 0.971 0.954 0.916 0.870

FLB 0.541 0.372 0.968 0.950 0.908 0.859

FIG. 3. Same as Fig. 2, but forG=0.60. The pairs of
open symbols denote coexisting states atT* =0.45/Dm* =1.0
(triangles), T* =0.45/Dm* =1.42 (diamonds), andT* =0.37/m* =4.0
(squares).
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cal line that the TCP is replaced by acritical end point
(CEP). Its meaning is illustrated by the exemplary coexisting
states indicated on theT* =0.45 line in Fig. 3: Upon increas-
ing Dm* from strongly negative values(pure A fluid), the
two-phase(IG)-(FL) coexistence does not terminate at some
critical value DmTCP

* . Instead, the(IG)-(FL) coexistence
changes continuously into asFLBd-sFLAd coexistence and
finally terminates into a demixing CP. The “perturbation”
of the (IG)-(FL) transition by demixing transitions becomes
even more pronounced upon further decrease ofG. An
example is shown in Fig. 4 where the phase diagram is plot-
ted for G=0.40 ss.0.74d. Most significant here is the ap-
pearance ofclosedcoexistence loops at temperatures larger
thanTTCPA

* .0.59. To understand their meaning we consider
the exemplary temperatureT* =0.6. Starting from the pure
A fluid, which displays a second-order(IG)-(FL) transition,
and increasingm* , one observes at first the appearance of a
TCP. Further increase of the chemical potential results in a
(IG)-(FL) phase coexistence(see pair of triangles in Fig. 4),
which implies that the TCP must have moved towards
higher temperatures. After a transformation TCP→CEP, the
(IG)-(FL) coexistence then changes into asFLBd-sFLAd coex-
istence, as indicated by the pair of diamonds in Fig. 4. Upon
further increase ofm* the coexistence region finally closes
at the demixing critical point. The appearance of loops in
the packing fraction-concentration diagrams thus reflects the
nonmonotonicbehavior ofTTCP

* upon varyingm* , which is in
contrast to the mononotic behavior observed in more sym-
metric mixtures(see Sec. III B 1). A further difference ap-
pears when one compares the locations of the TCP’s and
CEP’s at intermediate temperatures such asT* =0.5 or T*

=0.45, for example. It is seen that the TCP’s and CEP’s
become related to significantly higher packing fractions, in-
dicating a destabilization of the isotropic-ferromagnetic
transition. Finally, when turning to even more asymmetric
mixtures such asG=0.30 ss.0.67d (cf. Fig. 5), the phase
diagram becomes completely dominated by demixing
transitions.

3. Phase diagrams in the chemical potential plane

It is instructive to view the results from Secs. III B 1 and
III B 2 also in the plane spanned by the thermodynamic input
parametersm* =mA

* +mB
* andDm* =mB

* −mA
* .

The resultingm* -Dm* phase diagrams for the four values
of G under investigation are displayed in Figs. 6(a)–6(d).
Within our definition of reduced parameters, the behavior
of the pure AsBd fluid is recovered in the limitsDm*

→−`s+`d and m* →−`. Therefore, the solid lines at small
m* , which approach the slope dDm* /dm* = +1f−1g, corre-
spond to thesIGd-sFLAd fsIGd-sFLBdg coexistences of the
pure systems. At temperatures larger thanTTCPA

* fTTCPB

* g,
these solid lines are replaced by dashed lines corresponding
to the second-ordersIGd-sFLAd fsIGd-sFLBdg transitions of
the pure systems. On the other hand, thesFLAd-sFLBd coex-
istences resulting from demixing transitions in dense mix-
tures(see Sec. III B 2) are indicated in Figs. 6(a)–6(d) by the
solid lines appearing at largerm* . A crossing of three solid
lines then indicates a triple pointsIGd-sFLAd-sFLBd.

Given these implications, them* -Dm* phase diagram at
G=0.75 [see Fig. 6(a)] reveals that the high-temperature be-
havior of this mixture is essentially an interpolation of pure
A andB fluids. Demixing transitions at this degree of asym-
metry only come into play at very low temperatures, in ac-
cordance to our discussion in Sec. III B 1. The representation
in Fig. 6(a) additionally shows that these low-temperature
sFLAd-sFLBd coexistences occur at positive values ofDm* ,
indicating that the presence ofB particles has to be favored
(relative to that ofA particles) in order to realize demixing
phase transitions. We understand this as a consequence of the
fact that theB particles are coupled less strongly than theA
particles. Therefore, only a strong perturbation of theA fluid
by B particles yields demixing. Less obvious is why the val-
ues ofDm* associated with thesFLAd-sFLBd coexistence ap-
parently decreasewith increasingm* . In this context it is
worth remembering thatDm* is a quantity describing which
species(A or B) can be inserted into the system with lower

FIG. 4. Same as Fig. 2, but forG=0.40. The pairs of open
symbols denote coexisting states atT* =0.60/m* =3.0 (triangles)
andT* =0.60/m* =17.9 (diamonds).

FIG. 5. Same as Fig. 2, but forG=0.30. The pairs of open
symbols denote coexisting states atT* =0.55/m* =0.0 (triangles)
andT* =0.55/m* =20.0 (diamonds).
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energetic effort. Given this definition, we interpret the de-
crease ofDm* such that the higher the packing fraction be-
comes, the more and more it gets difficult to insertA par-
ticles. This is a direct consequence of the bidisperse nature of
the underlying HS system, where it is easier to insert small
particlessBd than large onessAd. Clearly this effect gets even
more pronounced for more strongly differing particle sizes
[see Figs. 6(b)–6(d)]. Indeed, as we will later see, the de-
crease ofDm* with m* is one of the specific features of
bidisperse ferrocolloids relative to monodisperse systems
with asymmetric dipolar interactions.

Compared to the caseG=0.75, the new feature of the
phase diagram atG=0.60[see Fig. 6(b)] is (apart from quan-
titative differences already discussed in Sec. III B 2) the ap-
pearance of a CEP at temperatures in betweenTTCPA

* and
TTCPB

* . This phenomenon reflects the increasing importance
of demixing transitions relative to the(IG)-(FL) transitions
occurring already in the pure fluids. The topology of them*

-Dm* phase diagram changes even more upon further reduc-
tion of G [see Figs. 6(c) and 6(d)]. An important feature is
the appearance of “islands” of first-order transitions in be-
tween second-order transitions atG=0.40 and temperatures
larger than TTCPA

* [see, for example,T* =0.65 in Fig. 6(c)].
Furthermore, as seen both atG=0.40 and atG=0.30, the
demixing transitions become shifted not only towards higher
and higher temperatures, but also towards more and more
negativevalues ofDm* due to the smaller size ratios.

C. Ferrocolloids compared to monodisperse DHS mixtures

In view of the rich phase behavior observed for our fer-
rocolloid mixtures one may ask whether this behavior results

primarily from the asymmetric dipolar couplings—that is,
the different dipole moments—or rather from thecombina-
tion of different dipole moments and different sizes of the
dipolar spheres. It is therefore instructive to compare the
results of the present study with previous work by us[13],
where we employed MMF theory in order to investigate bi-
nary DHS mixtures with different dipole momentsmA and
mB, butequaldiameterss=sA=sB. As an example, we com-
pare in Fig. 7 theh-cA phase diagrams of monodisperse and
bidisperse systems atG=0.4 (i.e., both systems have the
same dipolar coupling strength). Clearly, the phase diagrams
are similar from a topological point of view. Specifically,
both diagrams contain features such a CEP’s and demixing
CP’s, as well as “islands” of coexistence at temperatures
T* .TTCPA

* . Similar agreement is found at other values of the
interaction ratio, indicating that size asymmetry on top of the
dipolar asymmetry has little impact. To illustrate these more
subtle changes we compare in Fig. 8 them* -Dm* phase dia-
grams corresponding to theh-cA diagrams in Fig. 7 at the
exemplary temperatureT* =0.5. One finds that pronounced
differences between the two systems only occur at largem*

and intermediate values ofDm*—that is, in the parameter
range corresponding to the demixing transitions. This be-
comes understandable when one takes into account that de-
mixing transitions are associated with relatively high packing
fractions(see Fig. 7). Under these conditions, the free energy
of the dipolar mixtures will be dominated by the contribution
FHS [see Eq.(2.9)] stemming from the underlying HS sys-
tems. The latter contribution, however, will strongly depend
on whether one considers the bidisperse or monodisperse
case. In dense and strongly asymmetric bidisperse mixtures it

FIG. 6. m* -Dm* phase diagrams for bidisperse ferrocolloid with(a) G=0.75, (b) G=0.60, (c) G=0.40, and(d) G=0.30, at different
temperaturesT* . Solid (dotted) lines denote two-phase coexistence(critical) lines. Solid circles, triangles, and squares denote CP’s, TCP’s,
and CEP’s, respectively.
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is entropically favorable to insert small particlessBd into the
mixture, yielding small values ofDm* as discussed in Sec.
III B 3. In monodisperse mixtures, on the other hand, these
(size-induced) entropic differences vanish, and the more

strongly coupledA particles can be inserted with less ener-
getic effort (i.e., largeDm*), regardless of the packing frac-
tion. Together these effects shift the line of demixing transi-
tions occurring in the bidisperse system towards significantly
smaller values ofDm* compared to the monodisperse case,
which is exactly what one sees to be the case in Fig. 8.

Further information on how bidispersity affects dipolar
mixtures relative to monodisperse systems is gained from the
two parts of Fig. 9 where we compare theh dependence of
the temperatures and concentrations related to the(tri) criti-
cal and critical end points(again atG=0.4). As expected
from our discussion above, results for monodisperse and bid-
isperse systems nearly coincide for small packing fractions,
but differ for larger values ofh. The most prominent differ-
ence concerns the temperatures related to the demixing CP’s
(see the left-hand side of Fig. 9): the CP’s for monodisperse
systems appear at significantly larger temperatures than for
the bidisperse systems, indicating adestabilizationof demix-
ing with respect to the temperature range. On the other hand,
the composition of bidisperse systems at the onset of demix-
ing (i.e., at the CP’s) is more dominated byB particles.

IV. CONCLUSIONS

In this work we have employed density-functional theory
in the modified mean-field approximation in order to explore
the fluid-fluid phase behavior of a bidisperse ferrocolloid,
modeled by a binary mixture of dipolar hard spheres with
different sizessa and different dipole momentsma~sa

3. Re-
sults have been obtained for four exemplary values of the
parameter G=smB

2sA
3d / smA

2sB
3d measuring the degree of

asymmetry of the dipolar interactions within the mixture.
The corresponding phase behavior turns out to be signifi-
cantly richer than that of one-component DHS fluids, but at
the same time quite similar to that of binary DHS fluids with
different dipole moment andequalsizes, a system we have
recently investigated using the same theoretical approach
[13].

To begin with, a common feature of monodisperse and
bidisperse DHS mixtures is thedestabilization of the
isotropic-to-ferromagnetic transition compared to the one-
component case(i.e., the pureA fluid). Furthermore, within

FIG. 7. (a) Same as Fig. 4 and(b) h-cA phase diagram of a
monodisperse DHS mixture atG=0.4 [13].

FIG. 8. Comparison of them* -Dm* phase diagrams of a bidis-
perse ferrocolloid(solid line) and a monodisperse DHS mixture
(dashed line) at G=0.4 andT* =0.5. The solid circle denotes a CP
and the solid squares denote CEP’s.

FIG. 9. TemperaturesT* (left) and concentrationscA (right) re-
lated to the TCP’s, CEP’s, and CP’s as functions of the packing
fraction for a bidisperse ferrocolloid(solid lines) and a monodis-
perse DHS mixture(dashed lines) at G=0.4.
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the ferromagnetic phases both types of mixtures exhibitde-
mixing phase transitions intoA-rich and B-rich phases as
soon asG departs from unity. For weakly asymmetric sys-
tems(i.e., G close to 1) these transitions occur only at very
low temperatures and extremely large packing fractions. In
fact, assuming that the freezing densities of our mixtures
(where the size differences are relatively small) are roughly
given by that of a pure HS fluidsh.0.5d, it seems likely that
the demixing CP in these weakly asymmetric systems will be
preempted by freezing into some solid structure. We have
shown, however, that demixing becomes significantly stabi-
lized both in terms of temperature and in terms of packing
fraction upon increasing the degree of asymmetry(decreas-
ing G). At least for highly asymmetric systems, one may
therefore expect that demixing into two fluid phases will
persist even when freezing is taken into account in the theory
(e.g., by following previous studies on freezing of one-
component dipolar fluids[22,23]).

The already mentioned similarity between monodisperse
and bidisperse DHS mixtures goes so far that thetopologyof
the phase diagrams at the values ofG considered is essen-
tially the same. Furthermore, even on a quantitative level
significant differences only appear at large total densities,
with the consequence that bidispersity affects the location of
the demixing rather than that of isotropic-to-ferromagnetic
phase transitions. A main effect at these(large) packing frac-
tions is that the demixing transition in the bidisperse system
is shifted towards lower temperatures compared to the mono-
disperse case, indicating adestabilizationof demixing. Apart
from these effects, the major conclusion emerging from our
study is that the role of size asymmetry on top of(dipolar)
interaction asymmetry is rather unimportant for packing frac-

tions within the fluid phase regime. Interestingly, this is con-
sistent with observations that were recently made in a study
of the phase behavior of polydisperse Lennard-Jones mix-
tures[24].

Given the approximate nature of the MMF theory, it is
clear that comparison with results from more sophisticated
approaches such as computer simulations or integral equa-
tion theories would be highly desirable. Such results are not
available at the moment, but based on our previous study on
equisized DHS mixtures[17], where we compared MMF re-
sults to those from reference hypernetted chain(RHNC) in-
tegral equation theory and based on the similarity between
monodisperse and bidisperse mixtures observed in the
present work, we can foresee some general trends. To start
with, we would expect that the observed destabilization of
the isotropic-to-ferromagntic transition is correct, but that the
ferromagnetic transition temperatures are strongly overesti-
mated by the MMF approach. We would also expect that
bidisperse DHS mixtures(as do monodisperse mixtures) ex-
hibit demixing already in theisotropic phase, which is just
not reproduced within the MMF approach(where demixing
appears only in the ferromagnetic phase) due to its strong
overestimation of ordering tendencies. Nevertheless, given
that both the MMF and RHNC approaches treat the hard-
sphere part of the free energy by means of very accurate
approximations[18,19,25,26], we would expect differing HS
sizes to have a comparable influence in both theories and
also future simulations.
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