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The phase behavior of bidisperse ferrocolloids consisting of binary mixtures of dipolar hard qjiitégs
with different particle diameters and different dipole moments is investigated using density-functional theory in
a modified mean-field approximation. We focus on the fluid phase regime, where we consider both isotropic
and anisotropic states. Depending on the paranietemeasuring the asymmetry of the dipolar couplings—the
systems display complex fluid-fluid phase behavior involving demixing transitions, as well as first- and second-
order isotropic-to-ferromagnetic phase transitions. The topology of the resulting phase diagrams turns out to be
similar to those corresponding to monodisperse DHS mixtures investigated previouslyRiyyss Rev. E69,
041201(2004)]. However, additional size asymmetry has a strong impact on the relative importance of the
various types of phase transitions. In particular, the demixing transition of bidisperse ferrocolloids is strongly
destabilized compared to that of monodisperse DHS’s in the sense that demixing critical points are significantly
shifted towards lower temperatures.
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I. INTRODUCTION As a contribution to fill this gap we have recently pre-

Ferrocolloids are stable colloidal suspensions of smalf€Nted13] a systematic study of the fluid-fluid phase behav-
magnetic particles in a carrier liquid like water or fi]. The  ior of the most simple model for a polydisperse ferrocolloid,
permanent magnetic dipole moment of the single-domairyvhich is a binary mixture of dipolar hard spher@HS’s)
particles is proportional to the volume of their magneticwith different dipole moments, andmg but equalsizes. In
cores. In ferrocolloids, polydispersity in the particle sizesorder to elucidate the effect of additional size nonuniformity
(which is an essentially omnipresent feature of colloidal syswe consider in the present study an extended binary DHS
tems therefore yields automatically a nonuniformity in the model involving different diameters, andog, to which the
distribution of magnetic moments and the resulting dipole-dipole momentsonccri and mBocag are coupled as in real
dipole interaction strength. The effect of this nonuniformity systems. Following our ealier worKL3], we perform our
on material properties such as magnetization, microstructurvestigations on the basis of density-functional theory in the
(in particular, cluster formation and viscosity has been in- so-called modified mean-field(MMF) approximation
tensely studied both experimentall§] and, more recently, [14-16. Despite various shortcoming$7], the great advan-
also by computer simulatiof2—6] and theory{7]. However, tage of MMF theory compared to computer simulations or
most of these studies are restricted to the investigation of onigtegral equation theories is that it allows one to scan phase
or a few thermodynamic states corresponding to highly didiagrams for large portions of the parameter space with rea-
lute ferrocolloid systems. sonable computational effort.

Less is known about the influence of polydispersity on the The remainder of this paper is organized as follows. In
overall phase behavior. In a recent computer simulatiorsec. Il we describe our model and summarize key expres-
study[8], Kristof et al. have calculated vapor-liquid coexist- sions of MMF density-functional theory for dipolar binary
ence curves of various polydisperse ferrocolloidsoae  mixtures[13]. Numerical results are presented in Sec. lIl,
(fixed) total density. The results imply saturation of largerwhere we first consider mixture phase diagrams in the
(i.e., more strongly interactingarticles in the denser phase, concentration-packing fraction plane at various temperatures.
indicating that vapor-liquid transitions in polydisperse ferro-This is completed in Sec. |l B 3 by a presentation of the
colloids are to some extent coupled wittemixing phase corresponding phase diagrams in a plane spanned by the
transitions. This is in qualitative agreement with experimentshemical potentials, which are input quantities in our theory.
[9,10 and also with earlier theoretical studig41,12,  Finally, in order to sort out the effect of size asymmetry
where—as a first approximation for polydispersity— top of dipolar interaction asymmetry we compare in Sec.
bidispersesystems consisting of two fractions of magnetic il C the behavior of a specific bidisperse DHS mixture to
particles with significant size differences have been considthat of the corresponding mixture monodisperse in $ing
ered. However, a broader understanding of the link betweer:m,,o3=0,). Our conclusions are summarized in
the nature and degree of nonuniformity and the macroscopigec. |V.
phase behavior, in particular the appearance of demixing

phase transitions, is still missing. Il. THEORY
A. Model
*Electronic address: gabriel.range@fluids.tu-berlin.de We consider a bidisperse ferrocolloid modeled by two
"Electronic address: sabine.klapp@fluids.tu-berlin.de species(A and B) of dipolar hard spheres with permament
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dipole momentan, and mg and diametersr, and og # oa. Q 4 .
The hard cores are assumed to be additive—that is, v (F9+ FHS+ FIPy /Y — > papa, (2.7
a
Oap= (05 + 0)/2, (2.7

with the ideal gas pafF'?), the hard-spher@HS) excess part
where the subscrip@ andb denote the components consid- (FHS, and a part which stems from the dipolar interaction
ered[a(b)=A,B]. The magnetic dipole moments of the par- (Fd'p). The ideal part is given by
ticles are coupled to the diameters via the relation 1
P, _ _
m,=mV,, (2.2) Y3 E [In(pa MESIEDY Ea dxa(X)In[2a,(x)],

a -1

wherem is the specific magnetization angy=mo>/6 is the (2.9

volume of the particle. The resulting pair potential between
two par“c]es with Coord|nates(1) (rlvwl) and (2) whereV is the VOlUme A is the thermal Wavelength and

=(r,,w,) is given as B=1/kgT is the inverse temperature. The second term in Eq.
(2.8) accounts for the loss of entropy in anisotropic configu-
©, 12 < Oaps rations[it vanishes fora,(x)=1/2].
Uaol12) UIP(r 1o 01, @5), T12> Oap, 23 For the hard-sphere excess part we choose the Boublik-

) _ _ Mansoori-Carnahan- Starling-LelaMCSL) approxima-
where ry,=[r ] =|r,—ry| is the particle separation and  tion [18—2Q
=(0, ¢) represents the orientation of a dipole in a spatially

fixed coordinate system. The dipolar potential is given by FHs g{( & B 1>In(1 £) + _34&
- 3
. My . A A i Vo BL\é&éE &(1-&)
USB(r 12,01, 0) = —52[M(wy) - M(wp) = 3 (wy) -F1) e
12 ¥ —22} ’ (2.9
X (M(wyp) - F12)], (2.4) &3é0(1 - &)

whereri(w) andFf 1, are unit vectors in the direction afand ~ With the total number density=p,+pg and the moments

r1o, respectively. Since we are interested in spatially homo- T i
geneous, but possibly orientationally orde¢égtromagnetig &= EE Pa0y- (2.10
phases, we consider fluid states with singlet densities a

For the special case,=o0g, the BMCSL approximation re-
ﬂ- )

1 duces to the Carnahan-Starling expression for one-
2 +,§1 aaPi(cos) |, component HS fluid$21], which wg useg in our previous
2.5 study of monodispe_rse I_DHS mixtur(e]s3]. . .

The MMF approximation enters into the dipolar contribu-
where a,(cos6) is a normalized orientational distribution tion FU?, where the pair correlation involved in the exact
function [J,dXa,(x)=1] and 6 is the angle relative to the expression forFe is set to its low density limit—i.e.,
director of the orientational ordeif preseny. Consequently, Jan(12) —exd—Bua,(12)]. As a result, the excess free energy
we can expand the distribution in Legendre polynomi@ls reduces to a quadratic form in the densities and order param-
[see second member of E@.5)], where the coefficients,,  eters[13],
are connected to the usudh-rank order paramter3,, via

pa(rl:wl)—z ay(cosd) = 2—(

oo

Fdip
v > PaPb > UabXa o (2.11
Cl’a'| . (26) ab 1=0

wherea, c=1/2 and thecoupling parameters are given as a
The isotropic phase is specified B, -1=0—i.e., ay(X) power series in terms of the dipole moments—that is,
=1/2—whereas a ferromagnetic phase is characterized by
P, # 0 for all I.

1
_ 2
Pai= f _1ana(X)7’|(X) =1

Uap, = > UggJ(maWb)n- (2.12
n=0

B. Modified mean-field density-functional theory For n>1, the temperature-dependent Coeff|C|eug§| ap-

In order to calculate the phase behavior of the model ferpearing in Eq(2.12 are defined by
rocolloids under consideration we employ density-functional
theory in the modified mean-field approximation. We restrict G - B f dr
our presentation here to the key expressions, since detailed abl ™ 2[34172 ! 12 30-2 r3n-2
descriptions of the MMF approach can be found in Refs.
[14,19 and in Ref.[13], where we applied the same theory
to DHS mixtures withequal diameters. x f doydwydw12Pi(COS ) Pi(COSH,)
The central quantity is the grand canonical density func- ~
tional ) of the mixture XD {0y, 02,019, (2.13
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TABLE I. The (:oefficientsug:))’I [see Eq(2.13] for |,n<4.

n=1 n=2 n=3 n=4
87 B 8 p°
=0 0 3 303, 0 25907,
_8m _16n g
=1 27 0 225603, 0
_87 8 _32m p°
=2 0 375303, 0 6125903,
167 B
=3 25725608, 0
0 0
_ 87 B
I=4 0 0 0 99225903,

where®,,, describes the angle dependencaidi—that is, ~ and ug™** where the pressures of the two stafésand 3

~ considered are identical—that is
Puudlia o2 ={mien) :Mled) = 3wy o Py =~ QP 001V = py = - Qo ANV
X[M(wy) - T o]} (2.14 (2.17)
The angular integrals in Eq2.13 can be solved as de-

scribed in Ref[13]. The coefficient corresponding to=1 in S )
Eq. (2.12 is related to an integral over the long-range dipo-sgre:h ?c?rt"c’c%(n gnquggé} ? ulginpr?r?gcgﬁs\gtez perform the
lar potential itself and therefore requires special treatment KA e DY 9

In Eq. (2.17), p3] and a3(x), i=1,2, are twoequilibrium

(see Ref[13] and references thergirOne eventually obtains S U = N+ v (2.18
Uy = 8_775 (2.1 where\ and v are coefficients, which have to be determined
U : using Eq.(2.17, and the vectorsu and u, specify two

orthogonal, fixed directions in the plane spanneduayand

In practice, we truncate the Taylor expansion appearing in,_ A good choice to investigate isotropic-to-ferromagnetic
EqQ. (2.12 at ny.=4. Explicit expressions for the resulting yansitions is the directionge=(-1,1) and u, =(1,1), im-
set(l,n<4) of coefficientsuggl [after performing the angu- plying that a change ok corresponds to a variation of the
lar integrals in Eq(2.13)] are given in Table I. In order to chemical potential differencdu=pug—ua While a change
identify the set of ten parametetfp,, a1, ... ,@a4}) Char-  of , corresponds to a variation of the total chemical potential
acterizing the equilibrium state at a givép,,T,V), we  ;=p,+ug. The search is started from some known initial
solve the Euler-Lagrange equations solution(e.g., a phase coexistence of a pariuid) specified

by the coefficientd\g, vg). Increasing\ successively from

Aay) =0, 5(8/]}) =0. (2.16 Mo, We determine the coexistence values/etand therefore
9pa daz(X) the pairs(uS°®, ug®—by performing anone-dimensional
Newton-Raphson algorithm on the coefficiemt To deter-
mine demixing transitions, which usually occur at high pack-
ing fractions, it is more appropriate to successively increase
the total chemical potential, therefore settipg(1,1) and
. =(-1,1). Hence, the temperature and chemical potential

In order to find twocoexistingstates at a given tempera- difference(T,Au) are the adequate tuning parameters to ex-
ture T one has to search for those chemical potentigf§*  plore isotropic-to-ferromagnetic coexistences, while we use

This is done numerically by employing a multidimensional
Newton-Raphson algorithm.

1. Searching for coexisting states
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FIG. 1. MMF phase diagram of a monodisperse DHS fluid con-
taining only A particles in the packing fraction-temperature plane
[T'=kgTos/ma, n=(m/6)pscs]. The inset shows the dependence FIG. 2. Packing fraction-concentration phase diagram for a bi-
of P51 atT =0.65. For an explanation of the lines and symbols, seelisperse ferrocolloid witd'=0.75 at various temperatures. For ex-
the main text. planation of the various lines, see the main text. The pairs of open

) ) symbols denote coexisting states Ht=0.50/Au"=—o (circles),
the temperature and total cher_m_cal poter.\(t.‘llalﬂ) astuning  T°=0.50/Ax"=0.6(triangley, T"=0.50/Ax" =0.9 (diamonds, and
parameters to search for demixing transitions. T°=0.30/u"=-5.5 (squares The solid circle denotes a demixing

lIl. RESULTS AND DISCUSSION critical point.

A. Reduced quantities and the one-component case tential differenceAx”. The phase behavior of these systems
In the grand-canonical ensemble the state of the mixturestrongly depends on the actual value of the dipolar interac-
can be characterlzed by the reduced temperatlite tion parameterl’. The latter is coupled to the size ratio
=kgTos/m3, the size ratics=og/ o, the dipolar interaction through Eq.(2.2), which impliesI'=s3. In the following two
parameterl '= (mgaa)/ (Maag), the total chemical potential sections we discuss characteristic phase properties at four
w ,uA+,uB, and the chemical potential differencku”  typical values ofl" in the range &I'<1 (the behavior at
= g~ s, Where p=os/ma[ua— B IN(AS/03)]. Minimi-  T'=1 then simply follows from interchanging and B). To
zation of the density functional then yields, along with theillustrate our results we mainly employ a “quasi-three-
orientational order parameters, the reduced dens'm}s dimensional” representation where the phase transition lines
=p,0”. Instead of these latter quantities, we employ here théor various temperatures are plotted in the, plane. More-
packing fractiomy:(77/6)2aa§pa and the concentration,  over, we present in Sec. Il B 3 additional diagrams using a
:oipA/ (Eaagpa) of speciesA as density order parameters. plane spanned by the chemical potentials—i.e., the input pa-
In the limit Ax" — — one recovers the MMF phase dia- rameters of our theory. This additional representation not
gram of a one-component DHS fluid containing only specie®nly helps to elucidate the effect of varyidg(or s, respec-
A (i.e.,ca=1). Results in they-T" plane are shown in Fig. 1. tively) on the mixture’s phase behavior, but also to later com-
Disregarding any solid structuréshich are not captured by pare(in Sec. Il O the bidisperse systems to monodisperse
the present approagthere are two phases involved: an iso- DHS mixtures.
tropic gas(IG) with zero orientational order parametére.,
Pa=1=0) appearing at low and intermediate packing frac- 1. Weakly asymmetric systems
tions and a ferromagnetic liquiéL) with Py ~;>0 appear- We start by considering weakly asymmetric mixtures. A
ing at higher packing fractiongee the inset in Fig.)1Be-  typical example is a system characterizedy0.75, which
low the temperaturel,cp, related to thetricritical point  corresponds to a size ratis=0.91. Figure 2 shows the
(TCP) of the A fluid the transition between the two phases isassociated phase diagram in thec, plane at several tem-
of first order both in» and in the orientational order param- peratured". In this representation, the pukgfluid discussed
etersPy ~1. An exemplary(1G)-(FL) coeX|stenceT =0.5is in Fig. 1 corresponds to the limiting casg=1 (Au" —
denoted by the open circles in Fig. 1. AboVeCP the (IG)-  -w)—that is, the upper border of the phase diagram—while
(FL) transition becomes continuoygsee the mset in Fig.)1  the lower border(c,=0) corresponds to a pur® fluid
The resultingeritical line separating the isotropic and ferro- (Au” — +). In order to understand the mixture’s behavior
magnetic phase can be found from a Landau analyis as d# between these cases we first consider the dashed line in
scribed in Refs[13,14]. Fig. 2, which connects the tricritical points at intermediate
values of the chemical potential difference. As in the one-
component fluid14], the behavior of the mixture order pa-
We now turn to truemixturesof bidisperse ferrocolloids rametersz and c, upon approaching a TCRat fixed u”,
characterized bg+ 1 and finite values of the chemical po- Ax’, or T") is characterized by the mean-field expongnt

B. Bidisperse ferrocolloids
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TABLE II. Order parameters of the coexisting states in Fig. 2.
Not shown are the values &f,-».

Y] Ca Pai Pe1 Pa2 Pso2

Circles IG 0.115 1.0 0.0 0.0 0.0 0.0
FL 0333 1.0 0.842 0.768 0.604 0.473
Triangles IG 0.192 0.372 0.0 0.0 0.0 0.0
FL 0.288 0.590 0.772 0.676 0.479 0.345
Diamonds IG 0.208 0.243 0.0 0.0 0.0 0.0
FL 0.237 0.307 0.570 0.454 0.232 0.142
Squares Fh 0565 0.593 0.971 0.954 0.916 0.870
FLg 0.541 0.372 0.968 0.950 0.908 0.859

=1. In Fig. 2, the crossing of the line of TCP’s with the upper
(lower) horizontal atc,=1 (0) indicates the packing fraction
corresponding to the TCP’s of the pure fluids—that is, FIG. 3. Same as Fig. 2, but foF=0.60. The pairs of
MreR,= Mreky Also, states on the lefiright-) hand side of — open symbf)Is denotg coexist_ing states 'Eith.45/AM::1.O
the line of TCP’s are isotropitferromagnetig. The shape of ~ (triangles, T =0.45/Ax =1.42 (diamonds, and T =0.37/u =4.0
the dashed line then implies that, upon increasipg from  (Squares
- to +oo, the concentratioc, of the TCP decreases mono-
tonically to zero, while the packing fraction remains essen-interpolation” between theglG)-(FL) coexistence of the
tially constant. At the same time the temperatuT$§P de- pureA and that of the pur® fluid.
crease monotonically fronT; cp,=0.59 to Trep -l“TTCF,A Only at substantially lower temperatures does one en-
=0.44 (where the latter relation follows from our definition counter new phase behavior characterized by the appearance
of T" andI). This indicates that the isotropic-ferromagnetic of additional critical point§CP’s) deep within the ferromag-
transition in the mixture is generaligestabilizedcompared ~netic regime(see Fig. 2 Approaching these CP’s from low
to the one-component cagee., the pureA fluid). This de-  temperaturesat fixed 4° or Au”) the differences between
stabilization is not a simple scaling effecesulting from the ~ the order parameters of the two coexisting phases vanish
different dipole momenisin the sense that the tricritical tem- With the (mean-field exponent@=1/2. Anexemplary coex-
peratures do not depend lineahnly monotonically on the  isting state is indicated by the pair of squaf@s=0.3, u’
concentration of the weaker species. =-5.9, and the corresponding order parameters are given in
Further information is gained from the two-phase coexist-Table II. It is seen that the two coexisting phases differ
ence lines, which are indicated by the solid lines in Fig. 2.mainly in c,, while the corresponding values of and Py,
Also, the symbols denote exemplary coexisting states, thare very close. One thus concludes that the additional critical
order parameters of which are given in Table. Il. For orien-points are essentially due wemixingphase transitions, a
tation consider first the pair of open circles at the upper borgenuine mixture phenomenon which is clearly absent in pure
der (ca=1) of the diagram, which denotes aiG)-(FL)  fluids. We note, however, that demixing appearently only
phase coexistence of the pure fluid at temperaturel” ~ comes into play at very high values g#—in fact, at packing
=0.5 (see the corresponding pair of open circles in Fig. 1 fractions outside the fluid phase regime. As a consequence,
Starting from these states and increagﬁ)g* (with the tem- the line of tricritical points, which are characterized by sig-
perature kept fixeg the (IG)-(FL) phase coexistence remains nificantly smaller packing fractions than those associated
at first, but the two coexisting states develop a difference invith the demixing CP, remains essentially unaffected by
the concentratiorm,. This is illustrated by the relative loca- demixing.
tion of the two triangles in Fig. 2 and the corresponding o
values ofc, in Table I, from which it follows that the fer- 2. Moderate and strongly asymmetric mixtures
romagnetic phase is more saturateddithan the coexisting Decreasing the size ratio, and therdbyfrom the value
isotropic phase. We understand this preference as a consgiscussed in Sec. Ill B 1 one generates mixtures with more
quence of therelative to theB componenk stronger cou- asymmetric dipolar interactions. Figure 3 illustrates the
pling betweenA particles, which—in combination with the phase behavior dt=0.60(s=0.84). At this degree of asym-
higher packing fraction—leads to a stronger mean field¥or metry, the topology of the phase diagram is essentially still
particles. For the same reason tearticles are also stron- the same as df =0.75. However, closer inspection reveals
ger oriented—i.e. Py, >Pg. IncreasingAx” even further that the temperatures related to the demixing CP’s are sub-
the (IG)-(FL) coexistence finally terminates into a TCP, stantially larger than af=0.75, while the packing fractions
where theP, -, of the ferromagnetic phase vanish. Similar characterizing the demixed states are much smaller. These
phase behavior is found at other temperatures in the rangghanges reflect the increased tendency of the more asymmet-
TTCP <T <TTCP , and we conclude that the general mixture ric system to demix. In fact, for temperatur€s<0.50 the
phase behavior in this temperature range is essentially just atemixing tendency “interferes” so strongly with the tricriti-
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FIG. 4. Same as Fig. 2, but fdfr=0.40. The pairs of open FIG. 5. Same as Fig. 2, but fdr=0.30. The pairs of open
symbols denote coexisting states Bt=0.60/u"=3.0 (triangle§  symbols denote coexisting states Bt=0.55/u"=0.0 (triangley

and T =0.60/u" =17.9(diamond3. and T =0.55/u" =20.0 (diamonds.

cal line that the TCP is replaced by aitical end point 3. Phase diagrams in the chemical potential plane

(CEP. Its meaning is illustrated by the exemplary coexisting o . .

states indicated on tHE =0.45 line in Fig. 3: Upon increas- It is mstr_uctlve to view the results from Secs. 111 B _1 gnd
ing A’ from strongly negative valuegure A fluid), the 11l B 2 also in the*plalje spanmed b*y thg thermodynamic input
two-phase(IG)-(FL) coexistence does not terminate at someParameterge =u+ug andAu = pg— .

critical value Auicp Instead, the(IG)-(FL) coexistence The resultingu -Au phase diagrams for the four values

changes continuously into éELg)-(FL,) coexistence and ©Of I' under investigation are displayed in Figsag-6(d).
finally terminates into a demixing CP. The “perturbation” Within our definition _of _reduced parameters, 'ghe_ beh*awor
of the (IG)-(FL) transition by demixing transitions becomes ©f the pure A(B) fluid is recovered in the limitsAu
even more pronounced upon further decreasel'ofAn ~ — ~>(**) andu ——. Therefore, the solid lines at small
example is shown in Fig. 4 where the phase diagram is plot » Which approach the slopeAdw /du = +1[-1], corre-
ted for '=0.40 (s=0.74. Most significant here is the ap- spond to the(IG)-(FLa) [(IG)-(FLg)] coexistences of the
pearance otlosedcoexistence loops at temperatures largefPure systems. At temperatures larger thBgp, [TTCPB].
thaanrCPAzo.SQ. To understand their meaning we considerthese solid lines are replaced by dashed lines corresponding
the exemplary temperatur® =0.6. Starting from the pure to the second-ordefiG)-(FL,) [(IG)-(FLg)] transitions of

A fluid, which displays a second-ordéiG)-(FL) transition, ~ the pure systems. On the other hand, RE)-(FLg) coex-
and increasing.’, one observes at first the appearance of dstences resulting from demixing transitions in dense mix-
TCP. Further increase of the chemical potential results in &res(see Sec. lll B 2are indicated in Figs.(&-6(d) by the
(IG)-(FL) phase coexistendsee pair of triangles in Fig.)4  solid lines appearing at larger". A crossing of three solid
which implies that the TCP must have moved towardslines then indicates a triple poifG)-(FLa)-(FLg).

higher temperatures. After a transformation TGEEP, the Given these implications, thg'-Au" phase diagram at
(IG)-(FL) coexistence then changes intéFdg)-(FL,) coex- I'=0.75[see Fig. €a)] reveals that the high-temperature be-
istence, as indicated by the pair of diamonds in Fig. 4. Uporhavior of this mixture is essentially an interpolation of pure
further increase ofu" the coexistence region finally closes A andB fluids. Demixing transitions at this degree of asym-
at the demixing critical point. The appearance of loops inmetry only come into play at very low temperatures, in ac-
the packing fraction-concentration diagrams thus reflects theordance to our discussion in Sec. Il B 1. The representation
nonmonotonidehavior of Ty, upon varyingu', which isin  in Fig. 6@ additionally shows that these low-temperature
contrast to the mononotic behavior observed in more syméFLa)-(FLg) coexistences occur at positive values ",
metric mixtures(see Sec. Il B L A further difference ap- indicating that the presence Bf particles has to be favored
pears when one compares the locations of the TCP’s an@elative to that ofA particleg in order to realize demixing
CEP’s at intermediate temperatures suchTas0.5 or T° phase transitions. We understand this as a consequence of the
=0.45, for example. It is seen that the TCP’s and CEP'dact that theB particles are coupled less strongly than the
become related to significantly higher packing fractions, in-particles. Therefore, only a strong perturbation of h#uid
dicating a destabilization of the isotropic-ferromagnetic by B particles yields demixing. Less obvious is why the val-
transition. Finally, when turning to even more asymmetricues of Ax” associated with théFL,)-(FLg) coexistence ap-
mixtures such a$'=0.30 (s=0.67) (cf. Fig. 5, the phase parently decreasewith increasingu’. In this context it is
diagram becomes completely dominated by demixingworth remembering thakx” is a quantity describing which
transitions. specieqA or B) can be inserted into the system with lower
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? e ()

)

FIG. 6. u'-Ax” phase diagrams for bidisperse ferrocolloid with I'=0.75, (b) '=0.60, () '=0.40, and(d) I'=0.30, at different
temperatured”. Solid (dotted lines denote two-phase coexistericatical) lines. Solid circles, triangles, and squares denote CP’s, TCP’s,
and CEP’s, respectively.

energetic effort. Given this definition, we interpret the de-primarily from the asymmetric dipolar couplings—that is,
crease ofAx” such that the higher the packing fraction be-the different dipole moments—or rather from thembina-
comes, the more and more it gets difficult to ins&rpar-  tion of different dipole moments and different sizes of the
ticles. This is a direct consequence of the bidisperse nature dfipolar spheres. It is therefore instructive to compare the
the underlying HS system, where it is easier to insert smaltesults of the present study with previous work by[L3],
particles(B) than large onegA). Clearly this effect gets even where we employed MMF theory in order to investigate bi-
more pronounced for more strongly differing particle sizesnary DHS mixtures with different dipole moments, and
[see Figs. @)-6(d)]. Indeed, as we will later see, the de- mg, butequaldiametersr=o,=03. As an example, we com-
crease ofAu” with " is one of the specific features of pare in Fig. 7 thep-c, phase diagrams of monodisperse and
bidisperse ferrocolloids relative to monodisperse systembidisperse systems dt=0.4 (i.e., both systems have the
with asymmetric dipolar interactions. same dipolar coupling strengtiClearly, the phase diagrams
Compared to the casE=0.75, the new feature of the are similar from a topological point of view. Specifically,
phase diagram dt=0.60[see Fig. €)] is (apart from quan- both diagrams contain features such a CEP’s and demixing
titative differences already discussed in Sec. lI)Bt&e ap- CP’s, as well as “islands” of coexistence at temperatures
pearance of a CEP at temperatures in betwégr, and T >TTCP Similar agreement is found at other values of the

TTCP This phenomenon reflects the increasing |mportanc®nteract|on ratio, indicating that size asymmetry on top of the
of dem|xmg transitions relative to th@G)-(FL) transitions  dipolar asymmetry has little impact. To illustrate these more
occurring already in the pure fluids. The topology of flae  subtle changes we compare in Fig. 8 fhieAu” phase dia-
-Ay” phase diagram changes even more upon further redugrams corresponding to the-c, diagrams in Fig. 7 at the
tion of I' [see Figs. &) and &d)]. An important feature is exemplary temperatur& =0.5. One finds that pronounced
the appearance of “islands” of first-order transitions in be-ifferences between the two systems only occur at |a[*ge
tween second-order transitions [a0.40 and temperatures and intermediate values dfu'—that is, in the parameter
larger than Trcp, [see, for exampleT =0.65 in Fig. 60)].  range corresponding to the demixing transitions. This be-
Furthermore, as seen both BE&0.40 and atl’=0.30, the comes understandable when one takes into account that de-
demixing transitions become shifted not only towards highemixing transitions are associated with relatively high packing
and higher temperatures, but also towards more and moffeactions(see Fig. 7. Under these conditions, the free energy
negativevalues ofAx” due to the smaller size rat® of the dipolar mixtures will be dominated by the contribution
FHS [see Eq.(2.9)] stemming from the underlying HS sys-
tems. The latter contribution, however, will strongly depend
In view of the rich phase behavior observed for our fer-on whether one considers the bidisperse or monodisperse
rocolloid mixtures one may ask whether this behavior resultgase. In dense and strongly asymmetric bidisperse mixtures it

C. Ferrocolloids compared to monodisperse DHS mixtures
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FIG. 7. (a) Same as Fig. 4 anth) 7-c, phase diagram of a
monodisperse DHS mixture &t=0.4[13].

is entropically favorable to insert small particle®) into the
mixture, yielding small values oAy" as discussed in Sec.
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FIG. 9. Temperature¥" (left) and concentrations, (right) re-
lated to the TCP’s, CEP’s, and CP’s as functions of the packing
fraction for a bidisperse ferrocolloigsolid lineg and a monodis-
perse DHS mixturg¢dashed linesat I'=0.4.

strongly coupledA particles can be inserted with less ener-
getic effort(i.e., largeAu’), regardless of the packing frac-
tion. Together these effects shift the line of demixing transi-
tions occurring in the bidisperse system towards significantly
smaller values ofAx” compared to the monodisperse case,
which is exactly what one sees to be the case in Fig. 8.
Further information on how bidispersity affects dipolar
mixtures relative to monodisperse systems is gained from the
two parts of Fig. 9 where we compare tlyedependence of
the temperatures and concentrations related tatthecriti-
cal and critical end pointgagain atl'=0.4). As expected
from our discussion above, results for monodisperse and bid-
isperse systems nearly coincide for small packing fractions,
but differ for larger values of;. The most prominent differ-
ence concerns the temperatures related to the demixing CP’s
(see the left-hand side of Fig):9he CP’s for monodisperse
systems appear at significantly larger temperatures than for
the bidisperse systems, indicatingl@stabilizationof demix-
ing with respect to the temperature range. On the other hand,
the composition of bidisperse systems at the onset of demix-

[l B 3. In monodisperse mixtures, on the other hand, theséng (i.e., at the CP’sis more dominated b particles.

(size-inducedl entropic differences vanish, and the more

10 T T T T

IG

FIG. 8. Comparison of the-Au" phase diagrams of a bidis-
perse ferrocolloid(solid line) and a monodisperse DHS mixture
(dashed lingat '=0.4 andT"=0.5. The solid circle denotes a CP
and the solid squares denote CEP’s.

IV. CONCLUSIONS

In this work we have employed density-functional theory
in the modified mean-field approximation in order to explore
the fluid-fluid phase behavior of a bidisperse ferrocolloid,
modeled by a binary mixture of dipolar hard spheres with
different sizeso, and different dipole momenmaocag. Re-
sults have been obtained for four exemplary values of the
parameter I'=(m3a3)/ (Maos) measuring the degree of
asymmetry of the dipolar interactions within the mixture.
The corresponding phase behavior turns out to be signifi-
cantly richer than that of one-component DHS fluids, but at
the same time quite similar to that of binary DHS fluids with
different dipole moment andqual sizes, a system we have
recently investigated using the same theoretical approach
[13].

To begin with, a common feature of monodisperse and
bidisperse DHS mixtures is thelestabilization of the
isotropic-to-ferromagnetic transition compared to the one-
component casé.e., the pureA fluid). Furthermore, within
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the ferromagnetic phases both types of mixtures exligit tions within the fluid phase regime. Interestingly, this is con-
mixing phase transitions inté\-rich and B-rich phases as sistent with observations that were recently made in a study
soon asl” departs from unity. For weakly asymmetric sys- of the phase behavior of polydisperse Lennard-Jones mix-
tems(i.e., I' close to 1 these transitions occur only at very tures[24].

low temperatures and extremely large packing fractions. In Given the approximate nature of the MMF theory, it is
fact, assuming that the freezing densities of our mixtureglear that comparison with results from more sophisticated
(where the size differences are relatively siatie roughly — approaches such as computer simulations or integral equa-
given by that of a pure HS fluithy=0.5), it seems likely that tion_theories would be highly desirable. Such re_sults are not
the demixing CP in these weakly asymmetric systems will bé2vailable at the moment, but based on our previous study on

preempted by freezing into some solid structure. We hav&auisizéd DHS mixturegl7], where we compared MMF re-
shown, however, that demixing becomes significantly stabiSults to those from reference hypernetted cH&RINC,) in-
gral equation theory and based on the similarity between

lized both in terms of temperature and in terms of packingﬁﬁ X - : :
fraction upon increasing the degree of asymmetigcreas- onodisperse and bidisperse mixtures observed in the
present work, we can foresee some general trends. To start

er]\grgf)(.)r,:\t;ig:étf?rzar:l%rgnii?r?/gmmgnt?/v éyfﬁén?hgggsmvaﬁwith_, we would expect thqt the o_b_ser\_/ed destabilization of
; S : . the isotropic-to-ferromagntic transition is correct, but that the

persist even when freezing is taken into account in the theoryy ., magnetic transition temperatures are strongly overesti-
(e.g., by following previous studies on freezing of one-maieq by the MMF approach. We would also expect that
component dipolar fluid§22,23). _ bidisperse DHS mixturegas do monodisperse mixtupesx-

The already mentioned similarity between monodispersgpit demixing already in thésotropic phase, which is just
and bidisperse DHS mixtures goes so far thatttp®logyof  not reproduced within the MMF approa¢ihere demixing
the phase diagrams at the valueslotonsidered is essen- appears only in the ferromagnetic phpseie to its strong
tially the same. Furthermore, even on a quantitative levebverestimation of ordering tendencies. Nevertheless, given
significant differences only appear at large total densitiesthat both the MMF and RHNC approaches treat the hard-
with the consequence that bidispersity affects the location o$phere part of the free energy by means of very accurate
the demixing rather than that of isotropic-to-ferromagneticapproximation§18,19,25,2§ we would expect differing HS
phase transitions. A main effect at thetege) packing frac- sizes to have a comparable influence in both theories and
tions is that the demixing transition in the bidisperse systenalso future simulations.
is shifted towards lower temperatures compared to the mono-
disperse case, indicatingdestabilizationof demixing. Apart
from these effects, the major conclusion emerging from our S.H.L.K. acknowledges financial support from the
study is that the role of size asymmetry on top(dipolar)  Deutsche Forschungsgemeinschaft through the Emmy-
interaction asymmetry is rather unimportant for packing frac-Noether Program.
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